Pressurization systems

Heating , cooling & potable

Planning, calculating and equipment

in partnership with

altecnic

Contents

Calculation procedures

2

Pressurization systems

Heating and cooling circuits	
Role of pressurization systems	3
Calculation parameters	3
Properties and auxiliary variables	4
Hydraulic integration	5
Special pressurization systems - overview	6
Reflex diaphragm expansion vessels	7
Heating systems	8 - 9
Solar energy systems	10 - 13
Cooling water systems	14 - 15
Reflex pressurization systems with external pressure generation	16 - 20
District heating systems, large-scale and special systems	21
Potable water systems	
Hot water systems	22 - 23
Pressure booster systems	22 - 24

General information

Terms, code letters, symbols

25

Calculation procedures

The aim of this guide is to provide you with the most important information required to plan, calculate and equip Reflex pressurization Calculation forms are provided for individual systems. Overviews detail the most important auxiliary variables and properties for calculation as well as relevant requirements for safety equipment.

Please contact us if you require any additional information. Your specialist adviser will be happy to help.

Standards, The following standards and guidelines contain basic information on planning, **guidelines** calculation, equipment and operation:

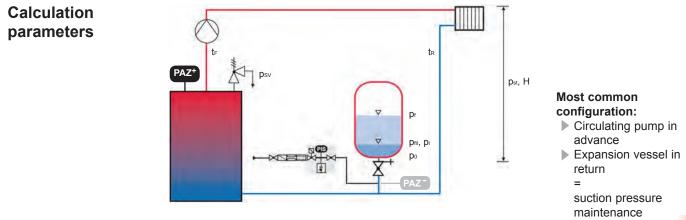
DIN EN 12828	Heating systems in buildings – Planning of hot water heating systems
DIN 4747 T1	District heating systems, safety equipment
DIN 4753 T1	Water heaters and water heating systems
DIN EN 12976/77	Thermal solar systems
VDI 6002	(Draft) Solar heating for domestic water
VDI 2035 Part 1	Prevention of damage through scale formation in domestic hot water and water heating installations
VDI 2035 Part 2	Prevention of damage through water-side corrosion in water heating installations
EN 13831	Closed expansion vessels with built in diaphragm for installation in water
DIN 4807	Expansion vessels
DIN 4807 T1	Terms
DIN 4807 T2	Calculation in conjunction with DIN EN 12828
DIN 4807 T5	Expansion vessels for drinking water installations
DIN 1988	Technical rules for drinking water installations, pressure increase and reduction
DIN EN 1717	Protection against pollution of potable water
DGRL	Pressure Equipment Directive 97/23/EC
BetrSichV	Ordinance on Industrial Safety and Health (as of 01/01/2003)
EnEV	Energy Saving Ordinance

Planning The product-specific information required for calculations can be found in the relevant product documents and, of course, at 'www.altecnic.co.uk'.

Systems Not all systems are covered by the standards, nor is this possible. Based on new findings, we therefore also provide you with information for the calculation of special systems, such as solar energy systems, cooling water circuits, and district heating systems.

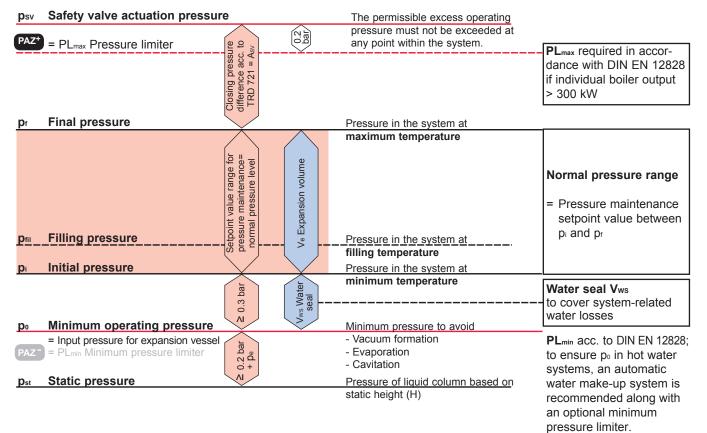
With the automation of system operation becoming ever more important, pressure monitoring and water make-up systems are thus also discussed, in addition to central deaeration and degassing systems.

Calculation programComputer-based calculations of pressurization systems and heat exchangers
can be performed via our Reflex calculation program, which is available for
use or download at www.reflex.de. Another option is to use our new 'reflex
pro app'!
Both tools represent a quick and simple means of finding your ideal solution.


Auxiliary variables

Role of pressurization systems

Pressurization systems play a central role in heating and cooling circuits and perform three main tasks:


- 1. They keep the pressure within permissible limits at all points of the system, thus ensuring that the authorized excess operating pressure is maintained while safeguarding a minimum pressure to prevent vacuums, cavitation and evaporation.
- 2. They compensate for volume fluctuations of the heating or cooling water as a result of temperature variations.
- 3. Provision for system-based water losses by means of a water seal.

Careful calculation, commissioning and maintenance are essential to the correct functioning of the overall system.

Definitions in accordance with DIN EN 12828 and following DIN 4807 T1/T2 based on the example of a heating system with a diaphragm expansion vessel.

Pressures are given as overpressures and relate to the expansion vessel connection or the pressure gauge on pressurization stations. The configuration corresponds to the diagram above.

Properties and auxiliary variables

Properties of water and water mixtures

Pure water without antifreeze additive

t / °C	0	10	20	30	40	50	60	70	80	90	100	105	110	120	130	140	150	160
n / % (+ 10°C of t)		0	0.13	0.37	0.72	1.15	1.66	2.24	2.88	3.58	4.34	4.74	5.15	6.03	6.96	7.96	9.03	10.20
p ₀ / bar		-0.99	-0.98	-0.96	-0.93	-0.88	-0.80	-0.69	-0.53	-0.30	0.01	0.21	0.43	0.98	1.70	2.61	3.76	5.18
$\Delta \mathbf{n}$ (t _R)								0	0.64	1.34	2.10	2.50	2.91	3.79				
ρ / kg/m³	1000	1000	998	996	992	988	983	978	972	965	958	955	951	943	935	926	917	907

Water with antifreeze additive* 20% (vol.) Lowest permissible system temperature -10°C

t / °C	0	10	20	30	40	50	60	70	80	90	100	105	110	120	130	140	150	160
n* / % (-10°C of t)	0.07	0.26	0.54	0.90	1.33	1.83	2.37	2.95	3.57	4.23	4.92		5.64	6.40	7.19	8.02	8.89	9.79
p ₀* / bar						-0.9	-0.8	-0.7	-0.6	-0.4	-0.1		0.33	0.85	1.52	2.38	3.47	4.38
ρ/kq/m ³	1039	1037	1035	1031	1026	1022	1016	1010	1004	998	991		985	978	970	963	955	947

Water with antifreeze additive* 34% (vol.) Lowest permissible system temperature - 20°C

t / °C	0	10	20	30	40	50	60	70	80	90	100	105	110	120	130	140	150	160
n* / % (-20 °C of t)	0.35	0.66	1.04	1.49	1.99	2.53	3.11	3.71	4.35	5.01	5.68		6.39	7.11	7.85	8.62	9.41	10.2
p ₀* / bar						-0.9	-0.8	-0.7	-0.6	-0.4	-0.1		0.23	0.70	1.33	2.13	3.15	4.41
ρ / kg/m³	1066	1063	1059	1054	1049	1043	1037	1031	1025	1019	1012		1005	999	992	985	978	970

n - Percentage expansion for water based on a minimum system temperature of +10°C (generally filling water)

n* - Percentage expansion for water with antifreeze additive* based on a minimum system temperature of -10°C or -20°C

Δv - Percentage expansion for water for calculation of temperature layer containers between 70°C and max. return temperature

pe - Evaporation pressure for water relative to atmosphere

 $p_{\text{e}^{\ast}}$ - Evaporation pressure for water with antifreeze additive

ρ - Density

- Antifreeze Antifrogen N; when using other antifreeze additives, the relevant properties must be obtained from the manufacturer

Approximate calculation of water content Vs of heating systems

$V_s = \dot{Q}_{tot} \times v_s$	+ pipelines + other	\rightarrow	for systems with natural circulation boilers
$V_{s} = \dot{Q}_{tot} (v_{s} - 1.4 I)$	+ pipelines + other	\rightarrow	for systems with heat exchangers
$V_{s} = \dot{Q}_{tot} (v_{s} - 2.0 I)$	+ pipelines + other	\rightarrow	for systems without heat exchangers
Installed hea	iting output		
Vs =	+ +	. =	liters

Specific water content vs in liters/kW of heating systems (heat exchangers, distribution, heating surfaces)

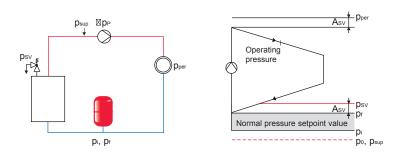
t _F /t _R	Radi	ators	Plates	Convectors	Ven-	Floor heating
°C	Cast iron	Tube and steel			tilation	
C	radiators	radiators				
60/40	27.4	36.2	14.6	9.1	9.0	
70/50	20.1	26.1	11.4	7.4	8.5	
70/55	19.6	25.2	11.6	7.9	10.1	
80/60	16.0	20.5	9.6	6.5	8.2	Vs = 20 l/kW
90/70	13.5	17.0	8.5	6.0	8.0	$V_{s}^{**} = 20 l/kW \frac{n_{EH}}{n}$
105/70	11.2	14.2	6.9	4.7	5.7	^{vs} 20 // NV n
110/70	10.6	13.5	6.6	4.5	5.4	
100/60	12.4	15.9	7.4	4.9	5.5	

Caution: approximate values; significant deviations possible in individual cases.

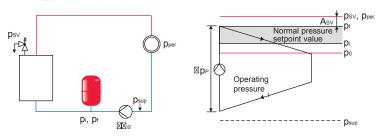
** If the floor heating is operated and protected as part of the overall system with lower flow temperatures, vs** must be used to calculate the total water volume

 n_{FH} = percentage expansion based on the max. flow temperature of the floor heating

Approx. water content of heating pipes

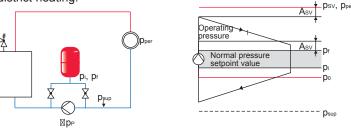

DN	10	15	20	25	32	40	50	60	65	80	100	125	150	200	250	300
Liters/m	0.13	0.21	0.38	0.58	1.01	1.34	2.1	3.2	3.9	5.3	7.9	12.3	17.1	34.2	54.3	77.9

Hydraulic integration


The hydraulic integration of pressure maintenance in the overall system greatly influences the pressure profile. This is made up of the normal pressure level of the pressure maintenance and the differential pressure generated when the circulating pump is running. Three main types of pressure maintenance are distinguished, although additional variants exist in practice.

Input pressure maintenance (suction pressure maintenance)

The pressure maintenance is integrated **before** the circulating pump, i.e. on the suction side. This method is used almost exclusively since it is the easiest to manage.



Follow-up pressure maintenance The pressure maintenance is integrated **after** the circulating pump, i.e. on the pressure side. When calculating the normal pressure, a system-specific differential pressure share of the circulating pump (50 ... 100%) must be included. This method is restricted to a limited number of applications 🖾 solar energy systems.

Medium pressure maintenance The measuring point of the normal pressure level is "moved" into the system by means of an analogy measurement section. The normal and operating pressure levels can be perfectly coordinated in a variable manner (symmetrical, asymmetrical medium pressure maintenance). Due to the technically demanding nature of this method, its use is restricted to systems with complicated pressure ratios, mainly in the field of district heating.

ps

- Advantages:
 - Low normal pressure level
 - Operating pressure
 > normal pressure,
 thus no risk of vacu-
- um formation
 Disadvantages:

 High operating pressure in the case of high circulating pump pressure (large-scale systems); pper must
- Advantages:

be observed

- Low normal pressure level, provided the full pump pressure is not required
- Disadvantages:
 High normal pressure level
 - Increased need to observe the required supply pressure p_{sup} for the circulating pump according to manufacturer specifications
- Advantages:

 Optimized, variable coordination of operating and normal pressure
- Disadvantages:

 Highly demanding with regard to system technology

Reflex recommendation Use suction pressure maintenance! A different method should only be used in justified exceptional cases. Contact us for more information!

Special pressurization systems - overview

Reflex manufactures two different types of pressurization system:

- Reflex diaphragm expansion vessels with gas cushions can function without auxiliary energy and are thus also classed as static pressurization systems. The pressure is created by a gas cushion in the vessel. To enable automatic operation, the system is ideally combined with reflex 'magcontrol' make-up stations as well as reflex 'servitec' make-up and degassing stations.
- Reflex pressurization systems with external pressure generation require auxiliary energy and are thus classed as dynamic pressurization systems. A differentiation is made between pump- and compressor-controlled systems. While reflex 'variomat' and reflex 'gigamat' control the system pressure directly on the water side using pumps and overflow valves, the pressure in reflex 'minimat' and 'reflexomat' systems is controlled on the air side by means of a compressor and solenoid valve.

Both systems have their own advantages. Water-controlled systems, for example, are very quiet and react very quickly to changes in pressure. Thanks to the unpressurized storage of the expansion water, such systems can also be used as central deaeration and degassing units ('variomat'). Compressor-controlled systems, such as 'reflexomat', offer extremely flexible operation within the tightest pressure limits, specifically within ± 0.1 bar (pumpcontrolled approx. ± 0.2 bar) of the setpoint value.

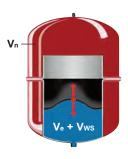
A degassing function can also be implemented in this case in combination with reflex 'servitec'.

Our Reflex calculation program will help you identify the ideal solution.

6

> Preferred applications are detailed in the following table. Based on experience, we recommend that the pressure maintenance be automated - i.e. pressure monitoring with timely water make-up – and that systems be automatically and centrally vented. This eliminates the need for conventional air separators and laborious post-venting, while ensuring safer operation and lower costs

'Degassing of heating and cooling systems' This brochure explains when and why the use of degassing systems is required, particularly in closed systems.



	Standard pressure maintenance Flow temp. up to 120°C	Pressure maint.	Autom. operation with make- up	Central deaera- tion and degassing	Preferred output range	
'reflex' expan- sion vessel	 Without additional equipment With 'control' make-up With 'servitec' 	X X X	x x	 X	Up to 1,000 kW	it i i i i i i i i i i i i i i i i i i
'variomat'	1 Single-pump system 2-1 Single-pump system 2-2 Dual-pump system	X X X	X X X	X X X	150 - 2,000 kW 150 - 4,000 kW 500 - 8,000 kW	
'gigamat'	 Without additional equipment With 'servitec' 	x x	X X	X* X	5,000 - 60,000 kW	
	- Special systems		A			
'minimat'	 Without additional equipment With 'control' make-up With 'servitec' 	X X X	x x	 X	100 - 2,000 kW	
'reflexomat'	 Without additional equipment With 'control' make-up With 'servitec' 	X X X	x x	 X	150 - 24,000 kW	

* In the case of return temperatures < 70°C, relieve 'gigamat' can also be used for degassing purposes without additional equipment

Reflex diaphragm expansion vessels types: 'reflex N, F, S, G'

Nominal volume Vn

Pressure monitoring

Input pressure po

Minimum operating

pressure

The pressure in the expansion vessel is generated by a gas cushion. The water level and pressure in the gas space are linked (p x V = constant). Therefore, it is not possible to use the entire nominal volume for water intake purposes. The nominal volume is greater than the water intake volume $V_e + V_{ws}$ by a factor of $\frac{p_f + 1}{2}$. $p_f - p_0$

This is one reason why dynamic pressurization systems are preferable in the case of larger systems and small pressure ratios (pf - p0). When using reflex 'servitec' degassing systems, the volume of the degassing pipe (5 liters) must be taken into account during sizing.

The gas input pressure must be manually checked before commission-

ing and during annual maintenance work; it must be set to the minimum

operating pressure of the system and entered on the name plate. The

planner must specify the gas input pressure in the design documentation. To avoid cavitation on the circulating pumps, we recommend that the minimum operating pressure not be set to less than 1 bar, even in the case of roof-mounted systems and heating systems in low-rise buildings.

The expansion vessel is usually integrated on the suction side of the

circulating pump (input pressure maintenance). In the case of pressure-

Without degassing $V_n = (V_e + V_{WS}) \frac{p_f + 1}{p_f - p_0}$

With reflex 'servitec' $V_n = (V_e + V_{WS} + 5I) \frac{p_f + 1}{p_f - p_f}$

Input pressure maintenance

 $p_0 \ge p_{st} + p_e + 0.2$ bar $p_0 \ge 1 \text{ bar}$ Reflex recommendation

Follow-up pressure maintenance

```
p_0 \ge p_{st} + p_e + \Delta p_P
```

7

Reflex formula for initial pressure

 $p_i \ge p_0 + 0.3$ bar

Reflex reco	mmendation	
p _f = p _{SV} - A	SV	
$p_{SV} \ge p_0 + 1$.		
	v ≤ 5 bar	
$p_{SV} \ge p_0 + 2$.	$\sqrt{5}$ bar	
Closing pre acc. to TRI	essure differe	nce
SV-D/G/H	0.1 p _{sv} 0.3 bar for	
	p _{sv} < 3 bar	
alt	ecn	
ſ	efler	K

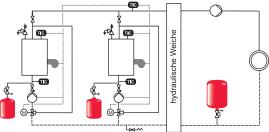
side integration (follow-up pressure maintenance) the differential pressure of the circulating pumps Ipp must be taken into account to avoid vacuum formation at high points. When calculating po, we recommend the addition of 0.2 bar safety margin. This margin should only be dispensed with in the case of very small pressure ratios. Initial pressure pa Water make-up

This is one of the most important pressures! It limits the lower setpoint value range of the pressure maintenance and safeguards the water seal Vws, that is the minimum water level in the expansion vessel.

Accurate checking and monitoring of the input pressure is only ensured if the Reflex formula for the input pressure is followed. Our calculation program takes this into account. With these higher input pressures compared to traditional configurations (larger water seal), stable operation is assured. Known problems with expansion vessels caused by an insufficient or even missing water seal are thus avoided. Particularly in the case of small differences between the final pressure and input pressure, the new calculation method can result in somewhat larger vessels. However, in terms of enhanced operational safety, the difference is insignificant.

reflex 'control' make-up stations automatically monitor and secure the initial or filling pressure. \rightarrow reflex 'control' make-up stations

The filling pressure pn is the pressure that must be applied, relative to Filling pressure pfil the temperature of the filling water, to fill a system such that the water seal Vws is maintained at the lowest system temperature. In the case of heating systems, the filling pressure and initial pressure are generally the same (lowest system temperature = filling temperature = 10°C). In cooling circuits with temperatures below 10°C, for instance, the filling pressure is higher than the initial pressure.


Final pressure pf The final pressure restricts the upper setpoint value range of the pressure maintenance. It must be set such that the pressure on the system safety valve is lower by at least the closing pressure difference Asv in accordance with TRD 721. The closing pressure difference depends on the type of the safety valve.

Degassing Targeted venting is very important, particularly in the case of closed Deaeration systems; otherwise, accumulations of nitrogen in particular can lead to troublesome malfunctions and customer dissatisfaction. reflex 'servitec' degases and makes up water automatically.

Heating systems

Calculation	According to DIN 4807 T2 and DIN EN 12828	
Configuration	Usually in the form of suction pressure maintenance as per adjacent diagram with circulating pump in advance and expansion vessel in return $-$ i.e. on the suction side of the circulating pump	rx 0
Properties n, p₀	Generally properties for pure water without antifreeze additive \rightarrow page 4	
	Calculation of percentage expansion, usually between lowest temperature = filling temperature = 10° C and highest setpoint value adjustment of temperature regulator t_{TR}	'reflex' 'variomat' 'gigamat' 'reflexomat'
	Particularly in the case of low-rise buildings and roof-mounted systems, the low static pressure p_{st} requires that the minimum supply pressure for the circulating pump be verified on the basis of manufacturer specifications. Even with lower static heights, we therefore recommend that the minimum operating pressure p_0 not be set to less than 1 bar.	Caution with roof-mount- ed systems and low-rise buildings Reflex recommendation:
	Since a filling temperature of 10°C generally equates to the lowest system temperature, the filling pressure and input pressure of an expansion vessel are identical. In the case of pressurization systems, it should be noted that filling and make-up systems may have to operate at a level approaching the final pressure. This only applies to 'reflexomat'.	p₀ ≥ 1 bar
Pressure maintenance	In the form of static pressure maintenance with 'reflex N, F, S, G' also in combination with the make-up and degassing stations 'control' and 'servitec', or from approx. 150 kW as a 'variomat' pressurization station for pressure maintenance, degassing and water make-up, or in the form of a compressor-controlled 'reflexomat' pressurization station. \rightarrow page 16	
	In systems with oxygen-rich water (e.g. floor heating with non-diffusion- resistant pipes), 'refix D', 'refix DE' or 'refix DE junior' are used up to 70°C (all water-carrying parts corrosion-resistant).	In the case of corrosion risk, use 'refix'
	To ensure ongoing safe and automatic operation of the heating system, the pressurization units should be equipped with make-up systems and supplemented with 'servitec' degassing systems. More information can be found on page 28.	
	If a temperature of 70°C is permanently exceeded by the pressure main- tenance, an in-line vessel must be installed to protect the diaphragms in the expansion vessel.	
Individual protection	According to DIN EN 12828, all heat generators must be connected to at least one expansion vessel. Only protected shut-offs are permitted. If a heat generator is shut off hydraulically (e.g. in-line boiler circuits), the connection with the expansion vessel must remain intact. Therefore, in the case of multi-boiler systems, each boiler is usually secured with a separate expansion vessel. This is only included in the calculation for the relevant boiler water content.	
	Due to the excellent decassing performance	

Due to the excellent degassing performance of 'variomat', we recommend that the switch frequency be minimized by also fitting a diaphragm expansion vessel (e.g. 'reflex N') to the heat generator in this case.

'reflex N, F, G' in heating systems

Configuration

Input pressure maintenance, expansion vessel in return, circulating pump in advance, observe information on page 9 for follow-up pressure maintenance.

Object:

Initial data

Heat generator	1	2 3 4		
Heat output	Q _h = kW	kW kW kW	Q tot = kW	
Water content	V _w = liters			
System flow temperature	t⊧ =°C	p. 4 Approximate water content		
System return temperature	t_R =°C \rightarrow	$v_s = f(t_F, t_R, Q)$	V _s = liters	▶ If _R > 70°C
Water content known	V _s = liters	$v_s = I(l_F, l_R, Q)$		'V in-line v
Highest setpoint value adjustme	ent	n 1. Dereentage evidencies n		required
Temperature regulator	trr =°C →	p. 4 Percentage expansion n (with antifreeze additive n*)	n = %	
Antifreeze additive	= %	(with antilleeze additive IT)		
Safety temperature limiter	tsī∟ =°C →	p. 4 Evaporation pressure p _e at > 100°C	n – har	
Salety temperature infliter	usil – C	with antifreeze additive pe*)	p₀ = bar	
Static pressure	p _{st} = bar		p _{st} = bar	
	P st –		P st –	

Pressure calculation

Input pressure p_0 = stat. pressure p_{st} + evaporation pressure p_e + (0.2 bar) ¹⁾ p_0 =	p₀ = bar
Safety valve actuation $p_{sv} \rightarrow Reflex$ recommendation	
pressure p _{SV} ≥ input pressure p₀ + 1.5 bar for p _{SV} ≤ 5 bar p _{SV} ≥ input pressure p₀ + 2.0 bar for p _{SV} > 5 bar	p_{sv} = bar
p _{sv} ≥ + bar	
Final pressure p _f ≤ safety valve psv - closing pressure difference acc. to TRD 721	
$p_f \le p_{SV}$ - 0.5 bar for $p_{SV} \le 5$ bar	p _f = bar
$p_f \le p_{SV}$ - 0.1 x p_{SV} for $p_{SV} > 5$ bar	pi –
pr ≤ bar	

- ¹⁾ Recommendation
 Check rec. supply pressure of circulation pump as per manufacturer specifications
 Check compliance
 - Check compliance with perm. operating pressure

Filling pressure =

> Initial pressure at 10°C filling temperature

altecnic reflex

Vessel

Expansion volume $V_e = \frac{n}{100} \times V_s$	= x = liters	V _e = liters
Water seal Vws = 0.005 x Vs f	for $V_n > 15$ liters with $V_{WS} \ge 3$ liters	
Vws ≥ 0.2 x Vn f	for $V_n \le 15$ liters	Vws = liters
Vws ≥x =	= = liters	
Nominal volume	p. +1	
Without 'servitec' $V_n = (V_e + V_{WS})$	$x \frac{p_{f} + 1}{p_{f} - p_{0}}$	
With 'servitec' $V_n = (V_e + V_{WS} + 5 \text{ lite})$	ers) x <u>pr +1</u>	V _n = liters
	pr - po	
V _n ≥	x liters	
	Selected Vn 'reflex' = liters	

Initial pressure check

Without 'servitec' $p_i = \frac{p_f + 1}{1 + \frac{V_e(p_f + 1)(n + n_R)}{V_n(p_0 + 1) 2n}} - 1 \text{ bar}$		
With 'servitec' $p_i = \frac{p_f + 1}{1 + \frac{(V_e + 5 \text{ liters})(p_f + 1)(n + n_R)}{V_n(p_0 + 1)2n}} - 1 \text{ bar}$	p _i = bar	
p _i = 1 bar = bar		

Condition: $p_i \ge p_0 + 0.25...0.3$ bar, otherwise calculation for greater nominal volume

Result summary

'reflex ...' / ... bar liters 'refix ...' / ... bar liters 'refix' only for oxygen-rich water (e.g. floor heating)

Solar heating plants (solar energy systems)

Calculation On the basis of VDI 6002 and DIN 4807 T2

In the case of solar heating plants, the highest temperature cannot be defined via the regulator on the heat generator, but instead is determined by the stagnation temperature on the collector. This gives rise to two possible calculation methods.

Direct heating in a flat collector or direct-flow tube collector

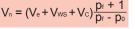
Indirect heating in a tube collector according to the heat pipe principle

Note manufacturer specifications for stagnation temperatures!

Nominal volume without evaporation

Nominal volume Calculation without evaporation in the collector

The percentage expansion n* and evaporation pressure p_e^* are based on the stagnation temperature. Since some collectors can reach temperatures of over 200°C, this calculation method cannot be applied here. In the case of indirectly heated tube collectors (heat pipe system), it is possible for systems to restrict the stagnation temperature. If a minimum operating pressure of $p_0 \le 4$ bar is sufficient to prevent evaporation, the calculation can usually be performed without taking evaporation into account.

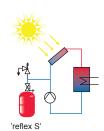

With this option, it should be noted that an increased temperature load will impact the antifreeze effect of the heat transfer medium in the long term.

Nominal volume Calculation with evaporation in the collector

For collectors with stagnation temperatures in excess of 200°C, evaporation in the collector cannot be excluded. In this case, the evaporation pressure is only included in the calculation up to the desired evaporation point (110 - 120°C). When calculating the nominal volume of the expansion vessel, the entire collector volume V_c is included in addition to the expansion volume Ve and the water seal V_{ws}.

This is the preferred option, as the lower temperature has a lesser impact on the heat transfer medium and the antifreeze effect is maintained for a longer period.

Nominal volume with evaporation



- Pressurization systems Heating and cooling circuits
- **Configuration** Since the expansion vessel with safety valve in the return must be installed such that it cannot be shut off from the collector, this inevitably leads to follow-up pressure maintenance, i.e. integration of the expansion vessel on the pressure side of the circulating pump.
- **Properties n*, p**_e* When determining the percentage expansion n* and the evaporation pressure p_e^* , antifreeze additives of up to 40% must be taken into account in accordance with manufacturer specifications. \rightarrow p. 4, properties for water mixtures with Antifrogen N

If calculating with evaporation, the evaporation pressure p_{e^*} is included up to the boiling temperature 110°C or 120°C. The percentage expansion n* is then determined between the lowest ambient temperature (e.g. -20°C) and the boiling temperature.

If calculating without evaporation, the evaporation pressure p_e^* and the percentage expansion n^* must be based on the stagnation temperature of the collector.

- **Input pressure** p_0 Depending on the calculation method employed, the minimum operating pressure (= input pressure) is adapted to the stagnation temperature in the collector (= without evaporation) or the boiling temperature (= with evaporation). In both cases, the normal configuration of the circulating pump pressure ΔpP must be taken into account since the expansion vessel is integrated on the pressure side of the circulating pump (follow-up pressure maintenance).
- **Filling pressure p**^{fil} As a rule, the filling temperature (10°C) is much higher than the lowest system temperature, such that the filling pressure is greater than the initial pressure.
- **Pressure maintenance** Generally in the form of static pressure maintenance with 'reflex S', also in combination with 'magcontrol' make-up stations.
 - **In-line vessels** If a stable return temperature \leq 70°C cannot be guaranteed on the consumer side, an in-line vessel must be fitted to the expansion vessel.

With evaporation $p_e^* = 0$ $n^* = f$ (boiling temp.)

Without evaporation p_e* = f (stagnation temp.) n* = f (stagnation temp.)

Without evaporation

 $p_0 = p_{st} + p_e^*(stagnation) + \Delta p_P$

11

With evaporation $p_0 = p_{st} + p_e^*(boiling) + \Delta p_P$

Enter set input pressure on name plate

reflex 'S' in solar energy systems with evaporation

Calculation method:

The minimum operating pressure p_0 is calculated such that no evaporation occurs up to flow temperatures of 110°C or 120°C – i.e. evaporation is permitted in the collector at stagnation temperature.

Configuration

Follow-up pressure maintenance, expansion vessel in return to collector.

Object:

12

Initial data

Number of collectors Collector surface area Water content per collector	Ac	M²	$A_{\text{Ctot}} = z \times A_{\text{C}}$ $V_{\text{Ctot}} = z \times A_{\text{C}}$	A _{Ctot} = m ² V _{Ctot} = liters	A _{ctot} = bar V _{ctot} = liters
Highest flow temperature Lowest ambient temperature Antifreeze additive	t⊧ ta	110°C or 120°C	→ p. 4 Percentage evaporation pres	e expansion n* and	n* = % p _e * = bar
Static pressure	pst	bar			p _{st} = bar
Difference at circulating pump	∆р⊳	bar			∆p _P = bar

Pressure calculation

	Pressure calculation							
		•	= stat. pressure p _{st} + pump pressure =+			p₀	=	bar
	pressure	psv psv	→ Reflex recommendation input pressure p₀ + 1.5 bar for p input pressure p₀ + 2.0 bar for p	p _{sv} > 5 bar	= bar	p sv	=	bar
2		p _f p _f	≤ psv – 0.5 ba ≤ psv – 0.1 ba	ar for psv ≤ 5 ar x psv > 5		pf	=	bar
	Vessel							
			= collector vol. V _{ctot} + pipelines + bu = +			Vs	= I	liters
	Expansion volume	Ve	$=\frac{n^{*}}{100}$ x V _s =	+	= liters	Ve	= I	liters
	Water seal	Vws Vws	= 0.005 x V₅ for Vₙ > 15 lite ≥ 0.2 x Vₙ for Vₙ ≤ 15 lite	ers	3 liters = liters	Vws	= I	liters
					= liters x S' = liters	Vn	= I	liters
		pi pi pi	$= \frac{p_{f}+1}{1+\frac{(V_{e}+V_{Ciol})(p_{f}+1)}{V_{n}(p_{0}+1)}} - 1 \text{ bar}$ $= \frac{-1}{1+\frac{1}{1+\frac{1}{1+1}}} - 1 \text{ bar}$ $\geq p_{0} + 0.250.3 \text{ bar, otherwise calculation}$		= bar er nominal volume	pi	=	bar
	Percentage expansi	on	Between lowest temperature (- 20°C) an \rightarrow p. 6		rature (usually 10°C) n* _F =%	n*⊧	=	%
	Filling pressure		$p_{fil} = V_n \times \frac{p_0 + 1}{V_n - V_s \times n_F^* - V_{WS}} - 1 \text{ bar}$ $p_{fil} = \dots \times \dots \times \dots$			pfil	=	bar
	Result summary							
	'reflex S'/10 bar lite	ers	Initial pressure	e pi =	par → check before ϕ bar → check make-u bar → refilling of sys	ір со		0

Final pressure $p_f = \dots bar$

- Check compliance with minimum supply pressure p_{sup} for circulating pumps acc. to manufacturer specifications. p_{sup} = p₀ - Δπ
- Check compliance with perm. operating pressure

Pressurization systems Heating and cooling circuits

reflex 'S' in solar energy systems without evaporation

Calculation method:The minimum operating pressure p_0 is set such that no
evaporation occurs in the collector – generally possible at
stagnation temperatures $\leq 150^{\circ}$ C.

Follow-up pressure maintenance, expansion vessel in return to collector

Object:

Initial data

Configuration

Number of collectors Collector surface area	Ac	m²	$A_{\text{Ctot}} = z \times A_{\text{C}}$	A _{Ctot} = m ²	Actot = bar
Water content per collector		liters	$V_{Ctot} = z \times A_C$	V _{Ctot} = liters	V _{Ctot} = liters
Highest advance temperature Lowest ambient temperature Antifreeze additive	e ta	- 20°C %	→ p. 4 Percentage e evaporation press	•	n* = % p _e * = bar
Static pressure	pst	bar			p _{st} = bar
Difference at circulating pump	∆р⊳	bar			∆p _P = bar
Pressure calculation					

Input pressure		p₀ = bar
	= bar	
Safety valve actuation	$p_{SV} \rightarrow Reflex recommendation$	
pressure	$p_{SV} \ge input \text{ pressure } p_0 + 1.5 \text{ bar for } p_{SV} \le 5 \text{ bar}$	n hor
	$p_{SV} \ge input \text{ pressure } p_0 + 2.0 \text{ bar for } p_{SV} > 5 \text{ bar}$	psv = bar
	psv ≥ + bar	
Final pressure	p _f ≤ safety valve p _{SV} – Closing pressure difference acc. to TRD 721	
•	$p_f \leq p_{SV}$ – 0.5 bar for $p_{SV} \leq 5$ bar	
	$p_f \leq p_{SV}$ - 0.1 bar x $p_{SV} > 5$ bar	p _f = bar
	p _f ≤ = bar	
Vessel		

Vessel

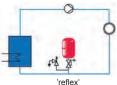
System volume		• + pipelines + buffer tan		Vs =
	Vs –		= liters	
Expansion volume	$V_{e} = \frac{n^{*}}{100} \qquad x V_{s}$	= +	= liters	Ve =
Water seal	Vws = 0.005 x Vs	for $V_n > 15$ liters with V	/ws ≥ 3 liters	
	Vws≥0.2 x Vn	for $V_n \le 15$ liters		Vws = I
	Vws≥x	= x	= liters	
Nominal volume	$V_n = (V_e + V_{WS})$	$x \frac{p_f + 1}{p_f - p_0}$		Vn = I
	V _n ≥		eflex S' = liters	
Check of initial pressure	$p_{i} = \frac{p_{f} + 1}{1 + \frac{V_{e}(p_{f} + 1)}{V_{n}(p_{0} + 1)}}$	1 bar		
	p _i =	– 1 bar	= bar	pi =
Condition:	$p_i \ge p_0 + 0.250.3$ ba	ar, otherwise calculation for	greater nominal volume	
Percentage expans	ion Between lowest temp → p. 6	erature (- 20°C) and filling to	emperature (usually 10°C) n* _F = %	n* _F =
Filling pressure	$p_{fil} = V_n \times \frac{p_0 + V_n - V_s \times r}{V_n - V_s \times r}$	1 n⊧*-Vws - 1 bar		p _{fil} =
	р _{fil} =	x	– 1 bar = liters	

imum supply pressure p_{sup} for circulating pumps acc. to manufacturer specifications. p_{sup} = p₀ - Δp_P Check compliance

Check compliance with min-

with perm. operating pressure

13



Result summary 'reflex S'/10 bar liters

14

Cooling water systems

Calculation	On the basis of DIN EN 12828 and DIN 4807 T2	
Configuration	In the form of input pressure maintenance as per adjacent diagram with expansion vessel on the suction side of the circulating pump, or in the form of follow-up pressure maintenance.	to
Properties n*	When determining the percentage expansion n*, antifreeze additives appropriate for the lowest system temperature must be included in accordance with manufacturer specifications. For Antifrogen N \rightarrow p. 5	
Expansion volume V₀	Calculation of the percentage expansion n* usually between the lowest system temperature (e.g. winter downtime: -20°C) and the highest system temperature (e.g. summer downtime +40°C).	
Minimum operating pressure p₀	Since no temperatures > 100°C are used, no special margins are required.	Enter set in pressure o plate
Filling pressure p _{fil} Initial pressure p _i	In many cases, the lowest system temperature is less than the filling tem- perature, meaning that the filling pressure is higher than the initial pressure.	
4 Pressure maintenance	Generally in the form of static pressure maintenance with 'reflex', also in combination with 'control' and 'servitec' make-up and degassing stations.	
Degassing, deaeration, water make-up	To ensure ongoing safe and automatic operation in cooling water systems, the pressurization units should be equipped with make-up systems and supplemented with 'servitec' degassing systems. This is particularly impor- tant with cooling water systems, since no thermal deaeration effects apply.	/ •
In-line vessels	Although 'reflex' diaphragms are suitable for temperatures down to -20°C and vessels to -10°C, the possibility of the diaphragms freezing to the container cannot be excluded. We therefore recommend the integration of a 'V in-line vessel' in the return to the refrigerating machine at temperatures ≤ 0 °C.	
Individual protection	As in the case of heating systems, we recommend the use of individual protection for multiple refrigerating machines. \rightarrow Heating systems, p. 8.	

input on name

Pressurization systems Heating and cooling circuits

'reflex N, F, S, G' in cooling water systems

Configuration

Input pressure maintenance, expansion vessel on suction side, circulating pump, observe information on page 7 for follow-up pressure maintenance.

Object: Initial data

Return temperature to refrigerating machinet _R = °C Advance temperature to refrigerating machinet _F = °C			
Lowest system temperature tsmin = liters (e.g. winter	downtime)		
Highest system temperature tsmax = liters (e.g. summ	er downtime)		
Antifreeze additive = %			
Percentage expansion $n^* \rightarrow .4$ $n^* = n^*$ at highest temp. (tsmax or tr) - n^*	at lowest temp. (t _{Smin} or t _F) n* = °C	n*	= %
Percentage expansion between lowest temperature and filling temperature	ture =°C ı	n⊧*	= %
Static pressure p _{st} = bar	1	pst	= bar

Pressure calculation

	ро	= static pressure p _{st} =	+ $(0.2 \text{ bar})^{1}$	=	bar	p₀	= bar
Safety valve actuation pressure	ps۱	$r \rightarrow \text{Reflex recomment}$	dation				
	ps۱	r ≥ input pressure p₀	+ 1.5 bar for psv ≤ 5 b	bar		nov	= bar
		input pressure p₀	+ 2.0 bar for $p_{SV} \le 5$ b	bar		psv	Dai
	ps	/ ≥	+	=	bar		
Final pressure	pf	≤ safety valve psv	- Closing pressure differe	ence acc. t	o TRD 721		
	pf	≤ psv	- 0.5 bar for psv ≤ 5 b	ar		-	- har
	pf	≤ psv	-0.1 bar for $p_{SV} \le 5$ b	ar		P f	= bar
	рf	≤	–		bar		

If R > 70°C, 'V in-line vessel' required

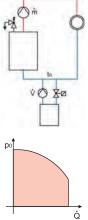
¹⁾ Recommendation

- Check rec. supply pressure of circulation pump as per manufacturer specifications
- Check compliance with perm. operating pressure

Vessel System volume Vs Refrigerating machines: liters Cooling registers : liters Buffer tanks : liters Vs = liters Pipelines : liters Other : liters System volume Vs : liters **Expansion volume** $V_e = \frac{n^*}{100} \times V_s$ = = Ve = liters liters Water seal Vws = 0.005x Vs for $V_n > 15$ liters with $V_{WS} \ge 3$ liters for $V_n \le 15$ liters Vws = liters Vws≥0.2 x Vn V_{ws}≥.....x...... = liters Nominal volume p_f +1 Without 'servitec' $V_n = (V_e + V_{WS})$ х pf - p0 pf +1 With 'servitec' $V_n = (V_e + V_{WS} + 5 \text{ liters}) x$ Vn = liters pf - po V_n ≥ x = liters Selected Vn 'reflex' = liters Initial pressure check p_f + 1 Without 'servitec' $p_i =$ --1 bar $V_e(p_f+1)$ 1+--- $V_n(p_0+1)$ p_f + 1 $\frac{P_{f} + 1}{1 + (V_e + 5 \text{ liters})(p_f + 1)} - 1$ bar p_i = bar $V_n(p_0+1)$ $p_i = -$ = bar 1+-----..... $p_i = p_0 + 0.25...0.3$ bar, otherwise calculation for greater nominal volume Filling pressure p₀ +1 $p_{\text{fil}} = V_n \ x \ \frac{p_0 \ \textbf{-} \ \textbf{I}}{V_n - V_s \ x \ n_F^* - V_{\text{WS}}}$ – 1 bar p_{fil} = bar p_{fil} = x – 1 bar = liters **Result summary** 'reflex' / bar liters Input pressure $p_0 = \dots$ bar \rightarrow check before commissioning Initial pressure p_i = bar \rightarrow check make-up configuration Filling pressure p_{fil} = bar \rightarrow refilling of system

Final pressure p_f = bar

	Reflex pressurization systems with external pres- sure generation Types: 'variomat', 'gigamat', 'minimat', 'reflexomat'	
Application	In principle, the same applies as for the selection and calculation of Reflex diaphragm expansion vessels. \rightarrow Heating systems page 8 \rightarrow Solar energy systems page 10 \rightarrow Cooling water systems page 14 However, such systems generally cover higher output ranges. \rightarrow page 6	
Nominal volume Vn	The main feature of pressurization systems with external pressure generation is that the pressure is regulated by a control unit independently of the water level in the expansion vessel. As a result, virtually the entire nominal volume Vn can be used for water intake purposes ($V_e + V_{ws}$). This represents a significant advantage of this method over pressure maintenance with expansion vessels.	Vn = 1.1 (Ve + Vws)
Pressure monitoring Minimum operating pressure p₀	When calculating the minimum operating pressure, we recommend the addition of a 0.2 bar safety margin to ensure sufficient pressure at high points. This margin should only be dispensed with in exceptional cases, since this will otherwise increase the risk of outgassing at high points.	Suction pressure maintenance $p_0 \ge p_{st} + p_e + 0.2$ bar Final pressure maintenance $p_0 \ge p_{st} + p_e + \Delta p_P$
Initial pressure p₃	This restricts the lower setpoint value range of the pressure maintenance. If the pressure falls below the initial pressure, the pressure pump or compressor is activated before being deactivated with a hysteresis of $0.2 \dots 0.1$ bar The Reflex formula for the initial pressure guarantees the required minimum of 0.5 bar above saturation pressure at the high point of a system.	$p_i \ge p_0 + 0.3$ bar
	The final pressure restricts the upper setpoint value range of the pressure maintenance. It must be set such that the pressure on the system safety valve is lower by at least the closing pres- sure difference A_{SV} , e.g. in accordance with TRD 721. The overflow or discharge mechanism must open, at the very latest, when the final pressure is exceeded.	$p_r \ge p_i + A_p$ Condition: $p_r \le p_{SV} - A_{SV}$ Closing pressure difference acc. to TRD 721 A_{SV} <u>SV-H</u> 0.5 bar SV-D/G/H 0.1 p_{SV} 0.2 bar for
Working range A₅ of pressure maintenance	This depends on the type of pressure maintenance and is limited by the ini- tial and final pressure. The adjacent values must be followed as a minimum.	0.3 bar for p _{sv} < 3 bar
Degassing Deaeration	Targeted venting is very important, particularly in the case of closed sys- tems; otherwise, accumulations of nitrogen in particular can lead to trouble- some malfunctions and customer dissatisfaction. reflex 'variomat' systems are pre-equipped with integrated make-up and degassing functions, while reflex 'gigamat' and reflex 'reflexomat' pressurization systems are ideally supplemented with reflex 'servitec' make-up and degassing stations. Partial flow degassing is only useful when integrated in the representative main flow of the system.	$\begin{array}{r} A_p = p_r - p_i \\ \hline \text{'variomat'} & \geq 0.4 \text{ bar} \\ \hline \text{'gigamat'} & \geq 0.4 \text{ bar} \\ \hline \text{'reflexomat'} & \geq 0.2 \text{ bar} \end{array}$


Compensating volume flow V	In the case of heating systems that are equipped with pressurization sys- tems controlled by an external energy source, the required compensating volume flow must be determined on the basis of the installed nominal heat output of the heat generators. For example, with a homogeneous boiler temperature of 140°C, the specific volume flow required is 0.85 l/kW. Deviations from this value are possible	t _t
	upon verification. Cooling circuits are generally operated in a temperature range < 30°C. The compensating volume flow is approximately half that of heating systems. Therefore, when making selections using the heating system diagram, only half of the nominal heat output Q must be taken into account.	р

To facilitate your selection, we have prepared diagrams allowing you to determine the achievable minimum operating pressure p_0 directly on the basis of the nominal heat output \dot{Q} .

Redundancy due to partial load behavior

To improve partial load behavior for pump-controlled systems in particular, we recommend that use of dual-pump systems, at least as of a heating output of 2 MW. In areas with particularly high operational safety requirements, the operator frequently demands system redundancy. In this context, it is practical to halve the output of each pump unit. Full redundancy is not generally required when you consider that less than 10% of the pump and overflow output is required during normal operation.

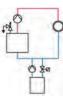
Not only are 'variomat 2-2' and 'gigamat' systems equipped with two pumps, but they also feature two type-tested overflow valves. Switching is performed on a load basis and in the case of malfunctions.

▶ Reflex recommendation: Configuration 50% + 50% = 100% as of 2 MW dual-pump systems → 'variomat 2-2'

'variomat' ≤ 8 MW pump-controlled

'gigamat' ≤ 60 MW pump-controlled

'minimat' ≤ 2 MW compressor-controlled


'reflexomat' ≤ 24 MW compressor-controlled

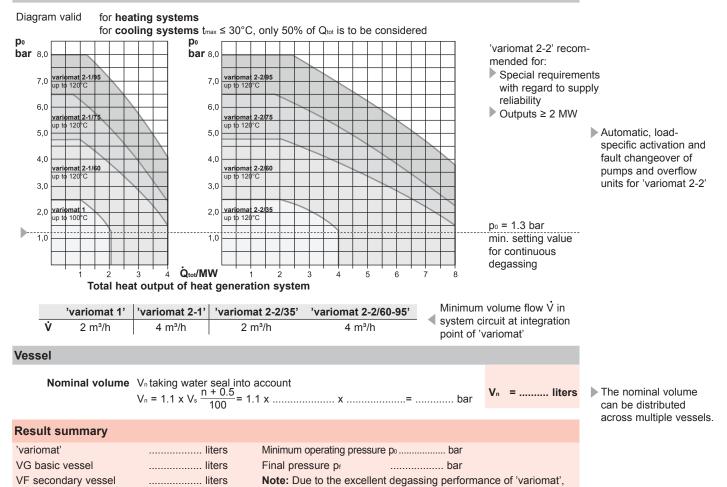
reflex 'variomat' in heating and cooling systems

Configuration

Input pressure maintenance, 'variomat' in return, circulating pump in advance, observe information on page 7 for follow-up pressure maintenance

ing pressure

Object:


Initial data							
Heat generator Heat output Water content	1 kW Vw = liters	2 kW	3 kW	4 kW	Q tot	= kW	
System flow temperature System return temperature Water content known	$\begin{array}{ccc} t_{\text{F}} & = & & & ^{\circ}\text{C} \\ t_{\text{R}} & = & & & ^{\circ}\text{C} \\ V_{\text{s}} & = & & & & \text{liters} \end{array}$	p. 4 Approxima vs = f (t _F , t		ontent	Vs	= liters	If R > 70°C, 'V in-line vessel'
Highest setpoint value adjustn Temperature regulator Antifreeze additive	$\begin{array}{rcl} \text{nent} & & \\ t_{\text{TR}} & = \dots & ^{\circ}\text{C} & \\ & = \dots & \% \end{array}$	p. 4 Percentag (with antif	ge expansio freeze addi		n	= %	required ▶ t _{TR} max. 105°C
Safety temperature limiter	t_{STL} =°C \rightarrow	p. 4 Evaporation (with antif	ion pressur freeze addi		pe	= bar	lf 110 < STL ≤ 120°C,
Static pressure	p _{st} = bar				pst	= bar	contact our specialist department
Pressure calculation							
Minimum operating p₀ = pressure p₀ = Condition p₀ ≥	+				p₀	= bar	¹⁾ The higher the value of p ₀ over p _{st} , the better
	ninimum operating pressu	•	0	ge 'reflexomat' A _p = bar	pf	= bar	the degassing function; 0.2 bar is required as a minimum
Safety valve actuation p _{SV} ≥ pressure p _{SV} ≥ p _{SV} ≥	final pressure + closing p _f + 0.5 bar	pressure difference for $p_{SV} \le 5$ bar sv for $p_{SV} > 5$ bar	ence A _{sv} r r	= bar	psv	= bar	 Check compliance with perm. operat-

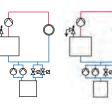
Control unit selection

VW thermal insulation

(for heating systems only)

..... liters

we generally recommend individual protection of the heat


generator using 're⊠ex' diaphragm expansion vessels.

Pressurization systems Heating and cooling circuits

reflex 'gigamat' in heating and cooling systems

Configuration

Input pressure maintenance, 'gigamat' in return, circulating pump in advance, observe information on page 7 for follow-up pressure maintenance

Initial data

Object:

Heat generator	1 2 3 4	
Heat output	kW kW kW	Q _{tot} = kW
Water content	V _w = liters	
System water content	$ \begin{array}{ll} V_{s} & = ^{\circ}C & \rightarrow p. \ 4 & Approximate \ water \ content \\ & v_{s} = f \ (t_{\textrm{F}}, \ t_{\textrm{R}}, \ \dot{Q}) \end{array} $	V _s = liters
Highest setpoint value adjustme Temperature regulator Antifreeze additive	$ \begin{array}{ll} t \\ t_{TR} &= \dots & ^{\circ}C \\ &= \dots & \% \end{array} p. \ 4 \begin{array}{l} \text{Percentage expansion n} \\ \text{(with antifreeze additive n*)} \end{array} $	n =%
Safety temperature limiter	$t_{\text{STL}} = \dots ^{\circ}C p. 4 \begin{array}{c} \text{Evaporation pressure } p_{\text{e}} \text{ at } > \\ \text{with antifreeze additive } p_{\text{e}}^{*}) \end{array}$	100°C p ₀ = bar
Static pressure	p _{st} = bar	p _{st} = bar

Specific values

$\begin{array}{llllllllllllllllllllllllllllllllllll$	p₀	= bar
Final pressure pr ≥ minimum operating pressure p₀ + 0.3 bar + working range 'reflexomat' A₀	pf	= bar
$p_f \ge \dots + 0.3 \text{ bar} + 0.4 \text{ bar} = \dots \text{ bar}$		
Safety valve actuation psv ≥ final pressure + closing pressure difference Asv		
pressure $p_{sv} \ge p_f + 0.5$ bar for $p_{sv} \le 5$ bar	n	– har
psv≥ pr + 0.1 x psv for psv > 5 bar	psv	= bar
psv≥ + bar		

Control unit selection

GH hydraulic unit

GG basic vessel

GF secondary vessel

..... liters

..... liters

Diagram valid for heating systems STL ≤ 120°C $t_{max} \leq 30^{\circ}$ C, only 50% of \dot{Q}_{tot} is to be considered for cooling systems **p**₀ 8,0 bar GH 90 70 6,0 GH 70 For systems outside the 5.0 displayed output ranges, please contact us 4,0 GH 50 3.0 2,0 1,0 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 **Č**tot/MW Total heat output of heat generation system Vessel Nominal volume Vn taking water seal into account $V_n = 1.1 \text{ x } V_s \frac{n + 0.5}{100} = 1.1 \text{ x } \dots$ Vn = liters bar **Result summary**

Final pressure pr

Minimum operating pressure po bar

..... bar

If R > 70°C, 'V in-line vessel' required

- ▶ trr max. 105°C
- If 110 < STL ≤ 120°C, contact our specialist department

¹⁾ Recommendation

Check compliance with perm. operating pressure

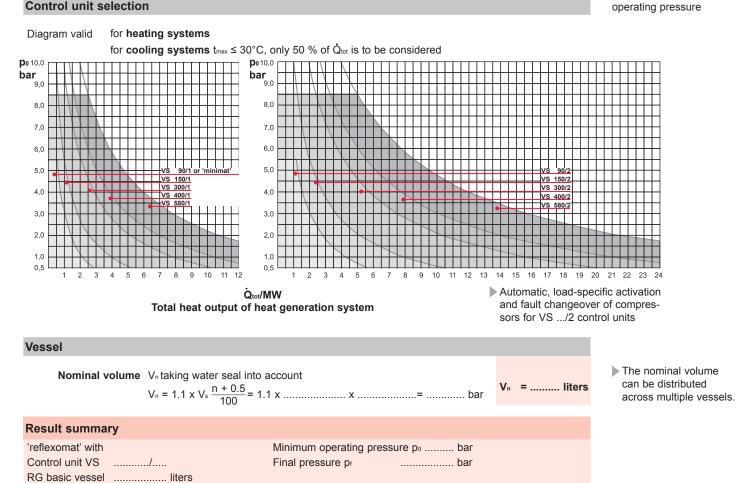
The nominal volume can be distributed across multiple vessels.

reflex 'minimat' and 'reflexomat' in heating and cooling systems

Configuration

Input pressure maintenance, 'minimat', 'reflexomat' in return, circulating pump in advance, observe information on page 7 for follow-up pressure maintenance

Check compliance with perm.


Initial data

Object:

initial data			
Heat generator Heat output Water content	$\dot{Q}_h = \dots + kW + kW + kW + kW + kW$	Q _{tot} = kW	
System flow temperature System return temperature Water content known	$\begin{array}{llllllllllllllllllllllllllllllllllll$	V _s = liters	If _R > 70°C, 'V in-line vessel'
Highest setpoint value adjustm Temperature regulator Antifreeze additive	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	n = %	required ▶ t _{TR} max. 105°C
Safety temperature limiter	t_{STL} =°C \rightarrow p. 4 Evaporation pressure p_e at > 100°C with antifreeze additive p_e^*)	p _e = bar	▶ If 110 < STL ≤ 120°0
Static pressure	p _{st} = bar	p _{st} = bar	contact our specialis department
Pressure calculation			
	stat. pressure p_{st} + evaporation pressure p_e + (0,2 bar) ¹⁾ +	p₀ = bar	¹⁾ Recommendation

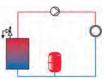
pressur	e p₀ =		+ (0.2	bar) ¹⁾ = bar	p₀ = bar
Recommendation	n p₀ ≥ 1.0) bar			
Final pressure	e pr≥min	iimum ope	erating pressure p 0 + 0.3 bar + working rai	nge 'reflexomat' A _P	p _f = bar
	p₁ ≥		+ 0.3 bar + 0.2 bar	= bar	pf – Dar
Safety valve	psv≥ fin	al pressu	re + closing pressure difference Asv		
actuation pressure	psv≥	pf	+ 0.5 bar for psv ≤ 5 bar		psv = bar
	psv≥	pf	+ 0.1 x psv for psv > 5 bar		psv – bai
	psv≥		+	= bar	

Control unit selection

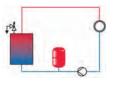
or

'minimat' MG

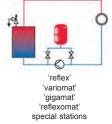
..... liters


District heating systems, large-scale and special systems

Calculation The usual approach for heating systems, e.g. using DIN EN 12828, is often not applicable to district heating systems. In this case, we recommend that you coordinate with the network operator and the relevant authorities for systems subject to inspection.


Contact us for more information!

- **Configuration** In many cases, the configurations for district heating systems differ from those used for heating installations. As a result, systems with follow-up and medium pressure maintenance are used in addition to classic input pressure maintenance. This has a direct impact on the calculation procedure.
- **Properties n, p**. As a rule, properties for pure water without antifreeze additive are used.
- **Expansion volume V**[•] Due to the frequently very large system volumes and minimal daily and weekly temperature fluctuations, when compared to heating systems, the calculations methods employed deviate from DIN EN 12828 and often produce smaller expansion volumes. When determining the expansion coefficient, for example, both the temperatures in the network advance and the network return are taken into account. In extreme cases, calculations are only based on the temperature fluctuations between the supply and return.
 - Minimum operating
pressure p0The minimum operating pressure must be adapted to the safety temperature
of the heat exchanger and determined such that the permitted normal and
operating pressures are maintained throughout the network and cavitation
on the pumps and control fittings is avoided.
 - **Initial pressure p**_a In the case of pressurization stations, the pressure pump is activated if the pressure falls below the initial value. Particularly in the case of networks with large circulating pumps, dynamic start-up and shutdown procedures must be taken into account. The difference between p_i and p₀ (= PL_{min}) should then be at least 0.5 ... 1 bar.
- Pressure maintenance In the case of larger networks, almost exclusively in the form of pressure maintenance with external pressure generation, e.g. 'variomat', 'gigamat', 'minimat' or 'reflexomat'. With operating temperatures over 105°C or safety temperatures STL > 110°C, the special requirements of DIN EN 12952, DIN EN 12953 or TRD 604 BI 2 can be applied.
 - **Degassing** We recommend that heat generation systems that do not have a thermal degassing system be equipped with a 'servitec' vacuum spray-tube degassing unit.


Input pressure maintenance

Follow-up pressure maintenance

Medium pressure maintenance

Potable water is essential to life! For this reason, the expansion vessels in drinking water installations must meet the special requirements of DIN 4807 T5. Only water-carrying vessels are permitted.

Hot water systems

Calculation According to DIN 4807 T5 \rightarrow see form on p. 23

Configuration As per adjacent diagram.

As a rule, the safety valve should be installed directly at the cold water inlet of the water heater. In the case of 'refix DD' and 'DT5', the safety valve can also be fitted directly before the flow fitting (in water flow direction), provided that the following conditions are met:

'refix DD' with T-piece:Rp ¾max. 200 I water heaterRp 1max. 1,000 I water heaterRp 1¼max. 5,000 I water heater'refix DT5' flow fitting Rp 1¼:max. 5,000 I water heater

Properties n, p• Generally calculation between cold water temperature of 10°C and max. hot water temperature of 60°C.

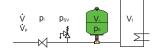
Input pressure p⁰ The minimum operating pressure or input pressure p₀ in the expansion ves-Minimum operating pressure at least 0.2 bar below the minimum flow pressure. Depending on the distance between the pressure reducing valve and the 'refix' unit, the input pressure must be adjusted to between 0.2 and 1.0 bar below the set pressure of the pressure reducing valve.

Initial pressure p_a The initial pressure is identical to the set pressure of the pressure reducing valve. Pressure reducing valves are required in accordance with DIN 4807 T5 to ensure a stable initial pressure and thus achieve the full capacity of the 'refix' unit.

Expansion vessel In potable water systems according to DIN 1988, only water-carrying 'refix' vessels meeting the specifications of DIN 4807 T5 must be used. In the case of non-potable water systems, 'refix' units with a single connection are sufficient.

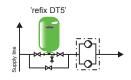
Pressure booster systems

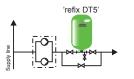
- **Calculation** According to DIN 1988 T5: Technical rules for drinking water installations, pressure increase and reduction
- **Configuration On the input pressure side of a PBS,** 'refix' expansion vessels relieve the connection line and the supply network. The use of these units must be agreed with the relevant water utility company.

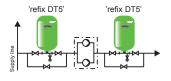

On the follow-up pressure side of a PBS, 'refix' vessels are installed to reduce the switch frequency, particularly in the case of cascade control systems.

Installation on both sides of the PBS may also be necessary.

Input pressure p₀ The minimum operating pressure or input pressure p₀ in the 'refix' vessel **Initial pressure p**_a must be set approx. 0.5 ... 1 bar below the minimum supply pressure on the suction side and 0.5 ... 1 bar below the switch-on pressure on the pressure side of a PBS.


Since the initial pressure pi is at least 0.5 bar higher than the input pressure, a sufficient water seal is always ensured; this is an important prerequisite for low-wear operation.


In potable water systems according to DIN 1988, only water-carrying 'refix' vessels meeting the specifications of DIN 4807 T5 must be used. In the case of non-potable water systems, 'refix' units with a single connection are sufficient.



Enter set input pressure on name plate

Enter set input pressure on name plate

. bar

1.1

'refix' in hot water systems

Tellx III not water syst	ems				
Object:			p _{sv} ₽		
Initial data					
Tank volume Heating output Water temperature in tank Set pressure of pressure reducing valve Safety valve setting Peak flow	Vt Q tww /epi psv Vp		n	=%	
Selection according to nom	inal vo	lume Vn			
Input pressure	po po	= set pressure of pressure reducing valve p _i – (0.21.0 bar) = = bar	po	= bar	
Nominal volume	Vn Vn	$= V_t \qquad \frac{n \ x \ (p_{SV} + 0.5)(p_0 + 1.2)}{100 \ x \ (p_0 + 1)(p_{SV} - p_0 - 0.7)}$ = liters	V.	liters	
		Selection according to brochure = liters	w n	iiters	

Set input pressure 0.2...1 bar below pressure reducing valve (depending on distance between pressure reducing valve and 'refix')

Selection according to peak volume flow $\dot{V_{\rm P}}$

When the nominal volume of the 'refix' unit has been selected, it must be checked for water-carrying vessels whether the peak volume flow V_p resulting from the piping calculation according to DIN 1988 can be implemented on the 'refix' unit. If this is the case, the 8-33 liter vessel of the 'refix DD' unit may have to be replaced with a a 60 liter 'refix DT5' vessel to enable a higher flow rate. Alternatively, a 'refix DD' unit with an appropriately dimensioned T-piece may be used.

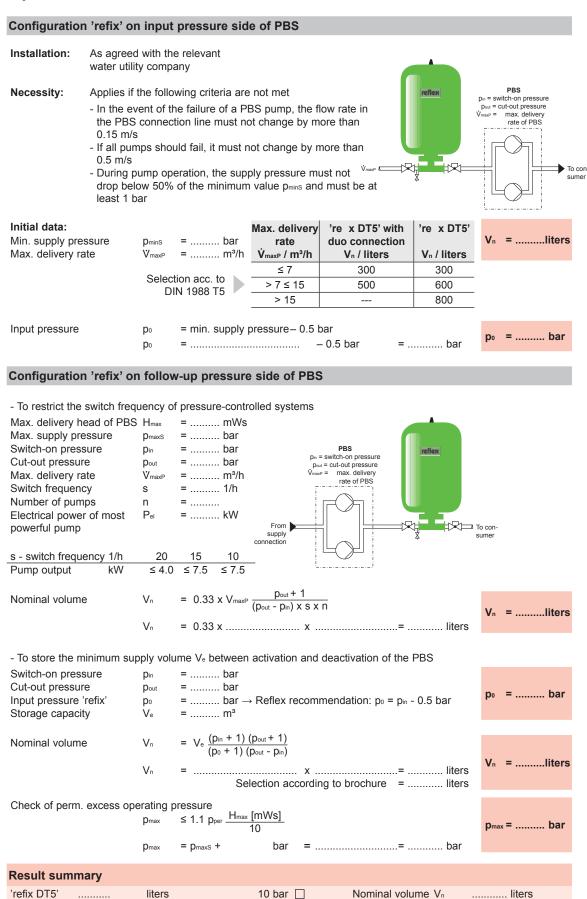
Recomm. max. Actual pressure loss

		peak flow V _₽ *	with volume flow V		
	'refix DD' 8 - 33 Liter With or without 'flowjet'		$\Delta p = 0.03 \text{ bar} \cdot \left(\frac{\dot{V} [m^3/h]}{2.5 m^3/h}\right)^2$		
■ V _p	T-piece duct Rp ³ / ₄ = standard	≤ 2.5 m³/h	(2.5 m³/h)		
V	T-piece Rp 1 (on-site)	≤ 4.2 m³/h	negligible	$\Delta \mathbf{p}$	=
	'refix DT5' 60 - 500 liters With 'flowjet' Rp 11/4	≤ 7.2 m³/h	$\Delta p = 0.04 \text{ bar} \left(\frac{\dot{V} [m^3/h]}{7.2 m^3/h} \right)^2$		
	'refix DT5' 80 - 3000 liters		() ([3/ -1)?		
7.	Duo connection DN 50	≤ 15 m³/h	$\Delta p = 0.14 \text{ bar} \cdot \left(\frac{\sqrt[V]{[m^3/h]}}{15 \text{ m}^3/h}\right)^2$		
v V	Duo connection DN 65	≤ 27 m³/h	$\Delta p = 0.11 \text{ bar} \cdot \left(\frac{\dot{V} [m^3/h]}{27 m^3/h}\right)^2$	G	=
on	Duo connection DN 80	≤ 36 m³/h			
			negligible		
	Duo connection DN 100	≤ 56 m³/h			
	'refix DE, DE junior'	Unlimited	$\Delta p = 0$		
	(non water-carrying)				

* calculated for a speed of 2 m/s

Result summary	/				altecni
'refix DT5'		liters	Nominal volume Input pressure	Vn liters p₀ bar	coflou
'refix DD' 'refix DT5'		liters, liters	G = (standard Rp ¾ included)		Iellen

'refix' in Pressure Booster Systems (PBS)


Object:

24

With duo connection DN 50 liters

..... liters

'refix DT5'

10 bar 🗌

16 bar 🗌

Usable volume Vo

Input pressure po

..... liters

..... liters

Terms

Formula letter	Explanation	See page (among others)
Ap	Working range of pressure maintenance	16
Asv	Closing pressure difference for safety valves	3, 7
n	Expansion coefficient for water	4, 8, 24
n*	Expansion coefficient for water mixtures	4, 11, 13
NR	Expansion coefficient relative to return temperature	9
p₀	Minimum operating pressure	3, 7, 16, 21, 22
pi	Initial pressure	3, 7, 16, 21, 22
Pe	Evaporation pressure for water	4
pe*	Evaporation pressure for water mixtures	4
pf	Final pressure	3, 7, 16
Pfil	Filling pressure	3, 7
Pst	Static pressure	3, 7
psv	Safety valve actuation pressure	3, 7
p _{sup}	Minimum supply pressure for pumps	5
Pper	Permissible excess operating pressure	5
V	Compensating volume flow	17
Vs	System volume	4
VA	Specific water content	4
Ve	Expansion volume	3, 7, 21
Vc	Collector content	10, 12
Vn	Nominal volume	7, 16
Vws	Water seal	3, 7
Δp_P	Pump differential pressure	5
ρ	Density	4

Code letters

Т –	Temperature
-----	-------------

	Т	
	TI	
	TIC	
6	ΓAΖ ⁺	

P – Pressure

Ρ

PI

PC

PS

PAZ-

PAZ+

L – Water level

LS

LS+

[LS⁺]

LAZ-

Temperature test port Thermometer Temperature regulator with display Temperature limiter, STL, STM

Pressure test port Pressure gauge Pressure regulator Pressure switch Pressure limiter - min, SPLmin Pressure limited - max, SPLmax

Water level switch Water level switch- max Water level switch- min Water level limiter - min

Code letters according to DIN 19227 T1, "Graphical symbols and code letters for process technology"

Symbols

 \bowtie

 \bowtie

Kext X

 \geq

 \square

Shut-off valve Fitting with protected shut-off and draining Spring-loaded safety valve Check valve Solenoid valve Motorized valve Overflow valve Dirt trap Water meter System separator altecnic Pump Heat consumer reflex

